If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x+14.75=0
a = 1; b = -8; c = +14.75;
Δ = b2-4ac
Δ = -82-4·1·14.75
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-\sqrt{5}}{2*1}=\frac{8-\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+\sqrt{5}}{2*1}=\frac{8+\sqrt{5}}{2} $
| 9x-4x+6=12 | | 24x^2+6x-6=0 | | 3x/2-5x-9=-5x/3+2 | | 27-9x=54+18x | | -13+23=-5(x+2) | | -x+20+2x=16 | | 2k−23=16 | | 12x-6=-10+11x | | 14x+4=14+5x | | 8d+11=19 | | 2x-1=3(x+2)–x | | 3+15=-2(6x-9) | | 3(2x+6)=36+12 | | 8@-(4a+32)=16 | | a2+9a-22=0 | | 5−x3=7 | | x^2−6x=82 | | -5(x-2)–(x+2)=50 | | p+5=6p | | 5(3+w)=3(6+w) | | 7(n-3)-(4-6n)=12n | | 1,-2)x=15 | | 15c-8=5c+48 | | MA+(x+37)+(x+67)=180 | | 5x^2+-8x+-40=0 | | 6(2x-10)=4x-4 | | -7+3=11-6x | | t=2.3t+8 | | 3(2t+8)-t= | | 2/9y-1/3=1/4 | | 1/3(z4)-6=2/3(5-z) | | 25x-2=5x+8 |